Lower Bounds on Formula Size of Error-Correcting Codes
نویسنده
چکیده
We show that every formula over the basis {∧,∨,¬} for a function f : {0, 1} → {0, 1}, such that ∀x, y ∈ f−1(1), d(x, y) ≥ 2d+ 1,
منابع مشابه
New lower bounds and constructions for binary codes correcting asymmetric errors
In this correspondence, we study binary asymmetric errorcorrecting codes. A general construction for binary asymmetric error-correcting codes is presented. We show that some previously known lower bounds for binary asymmetric error-correcting codes can be obtained from this general construction. Furthermore, some new lower bounds for binary asymmetric error-correcting codes are obtained from th...
متن کاملTitle New lower bounds and constructions for binary codes correcting asymmetric errors
In this correspondence, we study binary asymmetric errorcorrecting codes. A general construction for binary asymmetric error-correcting codes is presented. We show that some previously known lower bounds for binary asymmetric error-correcting codes can be obtained from this general construction. Furthermore, some new lower bounds for binary asymmetric error-correcting codes are obtained from th...
متن کاملGeneralized sphere-packing and sphere-covering bounds on the size of codes for combinatorial channels
Many of the classic problem of coding theory are highly symmetric, which makes it easy to derive spherepacking upper bounds and sphere-covering lower bounds on the size of codes. We discuss the generalizations of sphere-packing and sphere-covering bounds to arbitrary error models. These generalizations become especially important when the sizes of the error spheres are nonuniform. The best poss...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملBounds on Mixed Binary/Ternary Codes
Upper and lower bounds are presented for the maximal possible size of mixed binary/ternary error-correcting codes. A table up to length 13 is included. The upper bounds are obtained by applying the linear programming bound to the product of two association schemes. The lower bounds arise from a number of different constructions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007